肿瘤作为人类健康的头号杀手,其研究的重要性不言而喻。随着芯片和NGS技术的发展,发表了很多的肿瘤相关数据。然而这些数据来自不同的组织和团队,由于缺乏统一的数据管理和组织,这些数据在发表之后就没有再利用了,为了提高数据利用率,促进肿瘤研究的发展,Oncomine的开发团队收集了各种来源的肿瘤相关的芯片数据,用标准化的分析流程处理这些数据,数据分析的结果通过web服务查询和可视化,对应的文章链接如下
https://www.ncbi.nlmhttp://www.360doc.com/content/19/1224/13/pmc/articles/PMC1635162/
数据库的网址如下
https://wwwhttp://www.360doc.com/content/19/1224/13/resource/main.html
该网站只对科研工作者免费开放,需要学术邮箱注册对应的账号。该数据库中主要收录了以下两种类型的肿瘤芯片数据
mRNA expression
DNA copy number
每批芯片数据用表示,所有芯片数据对应的肿瘤类型和样本数示意如下
对于芯片数据,主要进行了以下几种类型的分析
coexpression analyses
differential expression analyses
outlier analyses
首页的面板分成了3个部分,示意如下
最左侧的部分用于对数据进行检索或者筛选,中间的面板用于展示所有的数据集,最右侧的面板用于显示数据集的详细结果。最基本的展现形式是热图,示意如下
1. 共表达分析
在search框中指定一个感兴趣的基因,然后可以查看在特定数据集中与该基因存在共表达的基因结果,示意如下
correlation从0到1,越接近于0, 说明相关性越高。
2. 差异分析
有以下两种差异分析
cancer_vs_cancer
cancer_vs_normal
差异分析的热图示意如下
给出了差异的pvalue, fold change等统计学指标,对于多个基因的差异分析,用上述的热图形式展现,对于单个基因的差异分析结果,展现形式如下
用柱状图的形式展示基因在每个样本中的表达量,每个柱子代表一个样本。
3. outlier 分析
由于肿瘤样本的异质性,会出现原癌基因只在部分样本中过表达的例子,当用所有样本进行差异分析时,这部分基因的差异分析结果并不显著,为此专门开发了一种离群值分析的算法,全称如下
cancer outlier profile analysis
简称COPA, 来识别只在部分肿瘤样本中高表达的潜在的原癌基因。结果示意如下
COPA值越高,说明该基因越可能是一个真实的离群基因。通过Oncomine数据库,可以方便的探究肿瘤相关的DNA拷贝数和基因表达谱数据。
- AI智能写作助手:全能文本生成软件,解决文章创作、内容策划与文案编写需求
- 网站抓好内容质量仍seo优化的重点和难点
- 在寻找提升WordPress网站SEO效果的插件时,有哪些免费且高效的选项值得推荐?
- RPA实战案例解析,一文看懂RPA工作原理
- 做seo为什么要从白帽seo做起
- 企业工信部备案提交教程(电子化备案)
- 伊金霍洛网站排名优化费用是如何计算的?
- 【R9s(全网通)搜狗手机输入法下载】OPPO R9s 全网通搜狗手机输入法12.1.1免费下载
- 57、曾正忠三部曲 《变化球 Breaking Ball》《迟来的决战 The Last Battle》《无胆狗雄 TATAMI》
- 微信公众号及服务号文章爬取
- 1001上汽大通车身左右高低不等
- 1002科尔沁艺术职业学院2025年单独考试招生宣传手册
- 1003【西部研究】美国大选靴子落地,后续应该关注什么
- 1004今期马猴羊出特,如秋叶落到几片是指什么生肖,成语分析落实释义释义
- 1005和平县律师服务动态
- 1006久恒·观澜首府
- 1007佩戴钨金首饰有何作用?
- 1008冬至的节日和习俗
- 1009吉利极氪汽车浙江宁波