相关推荐
数据挖掘系统的分类
2024-11-10 21:26

数据挖掘系统的分类

数据挖掘系统的分类

数据挖掘是一个交叉学科领域,受多个学科影响,包括数据库系统、统计学、机器学习、可视化和信息科学。此外,依赖于所用的数据挖掘方法,可以使用其他学科的技术,如神经网络、模糊和/或粗糙集合论、知识表示、归纳逻辑程序设计或高性能计算。依赖于所挖掘的数据类型或给定的数据挖掘应用,数据挖掘系统也可能集成空间数据分析、商务智能产品信息检索、模式识别、图像分析、信号处理、计算机图形学、Web技术、经济学、商业、生物信息学或心理学领域的技术。

由于数据挖掘源于多个学科,因此数据挖掘研究期望产生大量的各种类型的数据挖掘系统。这样,就需要对数据挖掘系统给出一个清楚的分类。这种分类可以帮助用户区分数据挖掘系统,确定最适合其需要的数据挖掘系统。

根据不同的标准,数据挖掘系统可以分类如下:

1)根据挖掘的数据库类型分类:数据挖掘系统可以根据挖掘的数据库类型分类。数据库系统本身可以根据不同的标准(如数据模型、数据类型或所涉及的应用)分类,每一类可能需要自己的数据挖掘技术。这样,数据挖掘系统就可以相应分类。

例如,根据数据模型分类,可以有关系的、事务的、对象-关系的或数据仓库的挖掘系统。如果根据所处理数据的特定类型分类,可以有空间的、时间序列的、文本的、流数据的、多媒体的数据挖掘系统,或万维网挖掘系统。

2)根据挖掘的知识类型分类:数据挖掘系统可以根据所挖掘的知识类型分类,即根据数据挖掘的功能分类,如特征化、区分、关联和相关分析、分类、预测、聚类、离群点分析和演变分析。一个综合的数据挖掘系统通常提供多种和/或集成的数据挖掘功能。

此外,数据挖掘系统还可以根据所挖掘的知识的粒度或抽象层进行区分,包括广义知识(高抽象层)、原始层知识(原始数据层)或多层知识(考虑若干抽象层)。一个高级数据挖掘系统应当支持多抽象层的知识发现。数据挖掘系统还可以分类为挖掘数据的规则性(通常出现的模式)与挖掘数据的奇异性(如异常或离群点)。一般地,概念描述、关联和相关分析、分类、预测和聚类挖掘数据的规则性,将离群点作为噪声排除。这些方法也能帮助检测离群点。

3)根据所用的技术类型分类:数据挖掘系统也可以根据所用的数据挖掘技术分类。这些技术可以根据用户交互程度(例如自动系统、交互探查系统、查询驱动系统),或所用的数据分析方法(例如面向数据库或面向数据仓库的技术、机器学习、统计学、可视化、模式识别、神经网络等)描述。复杂的数据挖掘系统通常采用多种数据挖掘技术,或采用有效的、集成的技术,结合一些方法的优点。

4)根据应用分类:数据挖掘系统也可以根据其应用分类。例如,可能有些数据挖掘系统特别适合金融、电信、DNA、股票市场、e-mail等。不同的应用通常需要集成对于该应用特别有效的方法。因此,泛化的全能的数据挖掘系统可能并不适合特定领域的挖掘任务。

    以上就是本篇文章【数据挖掘系统的分类】的全部内容了,欢迎阅览 ! 文章地址:http://dgaty.xhstdz.com/quote/66456.html 
     栏目首页      相关文章      动态      同类文章      热门文章      网站地图      返回首页 物流园资讯移动站 http://dgaty.xhstdz.com/mobile/ , 查看更多   
发表评论
0评